翻訳と辞書
Words near each other
・ McKenny baronets
・ McKenny Hall
・ McKenry
・ McKensie Garber
・ McKenty
・ McKay Lake (Minnesota)
・ McKay Lake (Pic River)
・ McKay McKinnon
・ McKay Meadow, California
・ McKay Range
・ McKay Reservoir
・ McKay Tower
・ McKay v R
・ McKay Valley
・ McKay's
McKay's approximation for the coefficient of variation
・ McKay's bunting
・ McKay, Calaveras County, California
・ McKay, California
・ McKay, Oregon
・ McKay-Dee Hospital
・ McKayla Maroney
・ McKays Station, Ohio
・ McKeague
・ McKean
・ McKean (surname)
・ McKean County, Pennsylvania
・ McKean Island
・ McKean Site
・ McKean Township


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

McKay's approximation for the coefficient of variation : ウィキペディア英語版
McKay's approximation for the coefficient of variation
In statistics, McKay's approximation of the coefficient of variation is a statistic based on a sample from a normally distributed population. It was introduced in 1932 by A. T. McKay. Statistical methods for the coefficient of variation often utilizes McKay's approximation.〔.〕
Let x_i , i = 1, 2,\ldots, n be n independent observations from a N(\mu, \sigma^2) normal distribution. The population coefficient of variation is c_v = \sigma / \mu . Let \bar and s \, denote the sample mean and the sample standard deviation, respectively. Then \hat_v = s/\bar is the sample coefficient of variation. McKay’s approximation is
:
K = \left( 1 + \frac \right) \ \frac


Note that in this expression, the first factor includes the population coefficient of variation, which is usually unknown. When c_v is smaller than 1/3, then K is approximately chi-square distributed with n - 1 degrees of freedom. In the original article by McKay, the expression for K looks slightly different, since McKay defined \sigma^2 with denominator n instead of n - 1 . McKay's approximation, K , for the coefficient of variation is approximately chi-square distributed, but exactly noncentral beta distributed
.
== References==


抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「McKay's approximation for the coefficient of variation」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.